International Journal of Biotech
Trends and Technology

Research Article | Open Access | Download PDF
Volume 5 | Issue 3 | Year 2015 | Article Id. IJBTT-V12P604 | DOI : https://doi.org/10.14445/22490183/IJBTT-V12P604

Evolution of Transgenic Technology in Cereal Crops: a Review Approach


Vikrant

Citation :

Vikrant, "Evolution of Transgenic Technology in Cereal Crops: a Review Approach," International Journal of Computer Trends and Technology (IJCTT), vol. 5, no. 3, pp. 17-26, 2015. Crossref, https://doi.org/10.14445/22490183/IJBTT-V12P604

Abstract

This review study reports a concise analysis of investigations on origin and progress of transgenic technology in major cereal crops which is the integral part of the cereals improvement programmes. Most genetic transformation approaches of cereal crops have been majorly restricted to rice, wheat, maize, barley and oats. Rice has been considered as a model system for transgenesis and also for many molecular genetic studies. Moreover, certain parameters; such as selection of target tissues for desired gene transfer, screening of competent genotypes for regeneration and transformation, modes of gene deliveries and use of suitable selection markers for screening of putative transformants have been considered as major influencing factors for the success of transgenic technology. Immature embryo in general has been proved definitely the best target tissue for cereal transformation, but the optimal size and stage of the embryos is greatly affected by vegetative and physiological status of the mother plant. Amongst various modes of gene transformation applied in cereals biotechnology; biolistic-mediated gene delivery has been used more frequently than Agrobacteriummediated transformation techniques. In addition to conventional plant breeding techniques, the genetic transformation of cereals with agronomically important target genes is required to improve nutritional quality and quantity of cereals particularly resistance to various stresses and diseases.

Keywords

Cereals, Selection Markers, Reporter gene, Agrobacterium, Biolistic, Transgenic.

References

[1] J.M. Dunwell, “Global population growth, food security and food and farming for the future”. In: D.J. Bennett, and R.C. Jennings, (Eds.) Successful Agricultural Innovation in Emerging Economies: New Genetic Technologies for Global Food Production, Cambridge University Press. pp.23-38, 2013.
[2] G.A. Khan, A. Bakhsh, T. Husnain, and S. Riazuddin, “Introduction of Cry1Ab gene in Gossypium hirsutum enhances resistance against lepidopteran pests”. Span. J. Agri. Res., vol. 9, pp.296-330, 2011.
[3] I.K. Vasil, “A short history of plant biotechnology”. Phytochem. Rev., vol.7, pp.387–394, 2008.
[4] R.T. Fraley, S.G. Roger, R.B. Horsch, P.S. Sanders, J.S. Flick, S.P. Adams, M.L. Bittner, L.A. Brand,C.L. Fink, J.S. Fry, G.R. Galluppi, S.B. Goldberg, N.L. Hoffman, and S. Woo, “Expression of bacterial genes in plant cells”. Proc. Natl. Acad. Sci. USA., vol.80, pp.4803–4807, 1983.
[5] M. Bevan, “Binary Agrobacterium vectors for plant transformation”. Nucleic Acids Res., vol.12, pp.8711-8721, 1984.
[6] J.C. Sanford, T.M. Klein, E.D. Wolt, and N. Alle, “Delivery of substances into cells and tissues using a particle bombardment process.” Pariculate Science and Technology, vol.5, pp. 27-37, 1987.
[7] W.J. Gordon-Kamm, T.M. Spencer, M.L. Mangano, T.R. Adams, R.J. Daines, W.G. Start, J.V. O’Brien, S.A. Chambers, W.R. Adams, N.G. Willetts, T.B. Rice, C.J. Mackey, R.W. Krueger, A.P. Kausch, and P.G. Lemaux, “Transformation of maize cells and regeneration of fertile transgenic plants”. Plant Cell, vol. 2, pp. 603-618, 1990.
[8] A.S. Ceasar, and E.S. Ignacimuthu, “Genetic engineering of millets: current status and future prospects”. Biotech. Lett., vol. 31, pp.779–788, 2009.
[9] Y. Hiei, S. Ohta, T. Komari, and T. Kumashiro, “Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA”. Plant J., vol. 6, pp. 271–282, 1994.
[10] P. Christou, T.L. Ford, and M. Kofron, “Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos”. Bio/Technology, vol. 9, pp. 957-962, 1991.
[11] Y. Hiei, and T. Komari, “Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed”. Nat. Protoc., vol. 3, pp. 824–834, 2008.
[12] H. Saika, and S. Toki, “Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacteriummediated transformation”. Plant Cell Rep., vol. 29, pp. 1351–1364, 2010.
[13] A. Karthikeyan, S.K. Pandian, and M. Ramesh, ”Agrobacterium-mediated transformation of leaf base derived callus tissues of popular indica rice (Oryza sativa L. subsp. indica cv. ADT43)”. Plant Sci., vol. 181, pp. 258–268, 2011.
[14] K.K. Sahoo, A.K. Tripathi, A. Pareek, S.K. Sopory, and S.L. Singla-Pareek, “An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars”. Plant Methods, vol. 7, pp. 49, 2011.
[15] L. Li, R. Qu, A. De Kochko, C. Fauquet, and R.N. Beachy, “An improved rice transformation system using the biolistic method”. Plant Cell Rep., vol. 12, pp. 250-255, 1993.
[16] M.T. Chan, H.H. Chang, S.L. Ho, W.F. Tong, and S.M. Yu, “Agrobacterium-mediated production of transgenic rice plants expressing a chimeric ?-amylase promoter/?-glucuronidase gene”. Plant Mol. Biol., vol.22, pp. 491-506, 1993.
[17] S. Toki, “Rapid and efficient Agrobacterium-mediated transformation in rice”. Plant Mol. Biol. Rep., vol.15, pp. 16-21, 1997.
[18] J. Dong, W. Teng, W.G. Buchholz, and T.C. Hall, “Agrobacterium-mediated transformation of Javanica rice”. Mol. Breed., vol. 2, pp. 267-276, 1996.
[19] H. Rashid, S. Yokoi, K. Toriyama, and K. Hinata, “Transgenic plant production mediated by Agrobacterium in indica rice”. Plant Cell Rep., vol. 15, pp. 727-730, 1996.
[20] Y.J. Lin, and Q. Zhang, “Optimizing the tissue culture conditions for high efficiency transformation of indica rice”. Plant Cell Rep., vol. 23, pp. 540-547, 2005.
[21] K. Ozawa, “Establishment of a high efficiency Agrobacteriummediated transformation system of rice (Oryza sativa L.)”. Plant Sci., vol. 176, pp. 522-527, 2009.
[22] Vikrant, R. Maragathamani, and P. Khurana, “Somatic embryogenesis from mature caryopsis culture under abiotic stress and optimization of Agrobacterium-mediated transient GUS gene expression in embryogenic callus of rice (Oryza sativa L.)”. Journal of Phytology, vol. 4(5), pp.16-25, 2012.
[23] S.H. Park, S.R.M. Pinson, and R.H. Smith, “T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices”. Plant Mol. Biol., vol. 32, pp. 1135-1148, 1996.
[24] J. Dong, P. Kharb, W. Teng and T.C. Hall, “Characterization of rice transformed via an Agrobacterium-mediated inflorescence approach”. Mol. Breed., vol. 7, pp. 187-194, 2001.
[25] M-J. Cho, H. Yano, D. Okamoto, H-K Kim, H-R. Jung, K. Newcomb, V.K. Le, H.S. Yoo, R. Langham, B.B. Buchanan, and P.G. Lemaux, “Stable transformation of rice (Oryza sativa L.) via microprojectile bombardment of highly regenerative, green tissues derived from mature seed”. Plant Cell Rep., vol.22, pp. 483-489, 2004.
[26] A. Nishizawa-Yokoi, M. Endo, K. Osakabe, H. Saika, and S. Toki, “Precise marker excision system using an animal-derived piggy Bactransposon in plants”. Plant J., vol. 77, pp. 454–463, 2014.
[27] V. Vasil, A.M. Castillo, M.E. Fromm, and I.K. Vasil, “Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus”. Nature Biotechnology, vol.10, pp. 667-674, 1992.
 [28] L.P. Ding, Y. Gao, S.C. Li, C. Wang, Y.S. Wang, and G.Y. He, “Study on influencing factors of mature embryos of wheat by particle bombardment”. Journal of Wuhan Botanical Research, vol. 25, pp. 217-221, 2007.
 [29] F.S. Dong, Y.M. Zhang, F. Yang, X.C. Liang, G.R. Liu, and H.B. Wang, “Research on shoot apical point transformation of wheat germinated seeds by particle bombardment”. Acta Agriculture Boreali-Sinica, vol. 24, pp. 1-6, 2009.
 [30] D.H. Min, S. He, Y. Zhang, and L.Q. Xia, “Optimization of key bombardment parameters in biolistic mediated transformation in wheat”. Acta Agronomica Sinica, vol.39, pp. 60-67, 2013.
 [31] L. Cai, D.F. Sun, and G.J. Sun,“Optimization of a biolistic transformation system for transfer of anti-freeze gene KN2 and the bar herbicide resistance gene in common wheat”. Genetics and Molecular Research, vol. 13, pp. 3474-3485, 2013.
 [32] J.B. Qin, Y. Wang, and Q. Zhu, “Biolistic transformation of wheat using the HMW-GS 1Dx5 gene without selectable markers”. Genetics and Molecular Research, vol.13, pp. 4361-4371, 2014.
[33] M. Cheng, J.E. Fry, S. Pang, H. Zhou, C.M. Hironaka, and D.R. Duncan et al., “Genetic transformation of wheat mediated by Agrobacterium tumefaciens”. Plant Physiol., vol.115, pp. 971–980, 1997.
[34] Y.H. Huang, M.P. Zhou, X.G. Ye, K.X. Tang, H.M. Cheng, and W.Z. Lu, “Study on the development of transgenic wheat mediated by Agrobacterium tumefaciens”. Acta Agronomica Sinica, vol.28, pp. 510-515, 2002.
 [35] Y.L. Wang, M.X. Xu, G.X. Yin, L.L. Tao, D.W. Wang, and X.G. Ye, “Transgenic wheat plants derived from Agrobacteriummediated transformation of mature embryo tissues”. Cereal Research Communications, vol. 37, pp. 1-12, 2009.
 [36] Y. He, H.D. Jones, S. Chen, X.M. Chen, D.W. Wang, K.X. Li, D.S. Wang, and L.Q. Xia, “Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with International Journal of Biotech Trends and Technology (IJBTT) - volume 5 Issue 3 July to September 201
improved efficiency”. Journal of Experimental Botany, vol. 61, pp.1567-1581, 2010b.
[37] X.Q. Hu, L.X. Guo, H.N. Wu, Y.H. Zhao, X.L. Wang, R.H. Wang, and G.R. Liu, “Agrobacterium tumefaciens-mediated genetic transformation of apical merited and tillering node in bread wheat”. Chinese Agricultural Science Bulletin, vol. 29, pp. 36-41, 2013b
[38] A. Chugh, Vikrant, A. Mahalakshmi, and P. Khurana, “A Novel approach for Agrobacterium-mediated germ line transformation of Indian Bread wheat (Triticum aestivum) and Pasta wheat (Triticum durum)”. Journalof Phytology, vol. 4(2), pp. 22-29, 2012.
[39] E.H. Coe, and K.R. Sarkar, “Preparation of nucleic acids and a genetic transformation attempt in maize”. Crop Sci., vol. 6, pp. 432- 435. 1966.
 [40] Y. Ishida, H. Saito, S. Ohta, Y. Hiei, T. Komari, and T. Kumashiro, “High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens”. Nat. Biotechnol., vol.14, pp. 745-750, 1996.
[41] Y. Ishida, Y. Hiei, and T. Komari, “Agrobacterium-mediated transformation of maize”. Nat. Protoc., vol. 2, pp. 1614–1621, 2007.
 [42] B.R. Frame, H. Shou, R.K. Chikwamba, Z. Zhang, C. Xiang, T.M. Fonger, S.E.K. Pegg, B. Li, D.S. Nettleton, D. Pei, and K.Wang, “Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system”. Plant Physiol., vol.129, pp.13-22, 2002.
[43] K. Lowe, B. Bowen, G. Hoerster, M. Ross, D. Bond, D. Pierce, and B. Gordon-Kamm, “Germline transformation of maize following manipulation of chimeric shoot meristems”. Biotechnology, vol. 13, pp. 677-682, 1995.
 [44] H. Zhong, B. Sun, D. Warkentin, S. Zhang, R. Wu, RT. Wu, and M.B. Sticklen, “The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes”. Plant Physiol., vol.110, pp. 1097-1107, 1996.
 [45] D.S. Ray, and P.D. Ghosh, “Somatic embryogenesis and plant regeneration from cultured leaf explants of Zea mays”. Ann. Bot., vol. 66, pp. 497-500, 1990.
 [46] M. Ahmadabadi, S. Ruf, and R. Bock, “A leaf-based regeneration and transformation system for maize (Zea mays L.)”. Transgenic Res., vol.16, pp. 437-448, 2007.
 [47] V. Sidorov, L. Gilbertson, P. Addae, and D. Duncan, “Agrobacterium-mediated transformation of seedling-derived maize callus”. Plant Cell Rep., vol. 25, pp. 320-328, 2006.
[48] S. Omirulleh, M. Ábrahám, M. Golovkin, I. Stefanov, M.K. Karabaev, L. Mustárdy, S. Mórocz, S. and D. Dudits, “Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize”. Plant Mol. Biol., vol.21, pp. 415-428, 1993.
 [49] O. Ombori, J. Muoma, and J. Machuka, “Agrobacteriummediated genetic transformation of selected tropical inbred and hybrid maize (Zea mays L.) lines”. Plant Cell Tissue Organ Cult., vol.113, pp. 11–23, 2013.
 [50] J.M.J. De Wet, R.R. Bergquist, J.F. Harlan, D.E. Brink, C.E. Cohen, C.A. Newell, A.E. De Wet, “Exogenous gene transfer in maize (Zea mays) using DNA-treated pollen”. In The Experimental Manipulation of Ovule Tissues (Eds. Chapman,G.P.Mantell, S.H. and Daniels). Longman, New York, pp. 197-209, 1985.
[51] Y. Ohta, “High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA”. Proc. Natl. Acad. Sci. USA, vol. 83, 715-719, 1986.
[52] Y. Horikawa, T. Yoshizumi, and H. Kakuta, “Transformants through pollination of mature maize (Zea mays L.) pollen delivered bar gene by particle gun”. Grassland Sci., vol. 43, pp. 117-123, 1997.
 [53] D.D. Songstad, “Maize-In Genetic Modification of Plants: Agriculture, Horticulture and Forestry” (Eds. F. Kempken, and C. Jung). Biotechnology in Agriculture and Forestry, Springer, Heidelberg, vol. 64, pp. 349-367, 2010.
 [54] Z-Y. Zhao, W. Gu, T. Cai, L. Tagliani, D. Hondred, D. Bond, S. Schroeder, M. Rudert, and D. Pierce, “High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize”. Mol. Breed., vol. 8, pp. 323-333, 2001.
[55] C.A. Rhodes, D.A. Pierce, I.J. Mettler, D. Mascarenhas, and J.J. Detmer, “Genetically transformed maize plants from protoplasts”. Science, vol. 240, pp. 204-207,1988.
[56] M.V. Golovkin, M. Ábrahám, S. Mórocz, S. Bottka, A. Fehér, and D. Dudits, “Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts”. Plant Sci., vol. 90, pp. 41-52, 1993.
[57] B.R. Frame, P.R. Drayton, S.V. Bagnall, C.J. Lewnau, W.P. Bullock, H.M. Wilson, J.M. Dunwell, J.A. Thompson, and K. Wang, “Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation”. Plant J., vol.6, pp. 941-948, 1994.
[58] F. Torney, B.G. Trewyn, V.S.-Y. Lin, and K. Wang, “Mesoporous silica nanoparticles deliver DNA and chemicals into plants”. Nat. Nanotechnol., vol. 2, pp. 295-300, 2007.
[59] S. Martin-ortigosa, J.S. Valenstein, W. Sun, L. Moeller, N. Fang, B.G. Trewyn, V.S.-Y. Lin, and K. Wang, “Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic Method”. Small, vol.8, pp. 413-422, 2012.
[60] J.M. Vega, W. Yu, A.R. Kennon, X. Chen, and Z.J. Zhang,“Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors”. Plant Cell Rep., vol. 27, pp. 297-305, 2008.
[61] B.R. Frame, J.M. Mcmurray, T.M. Fonger, M.L. Main, K.W. Taylor, F.J. Torney, M.M. Paz, and K. Wang, “Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts”. Plant Cell Rep., vol.25, pp. 1024-1034, 2006.
[62] W. Tang, R.J. Newton, and D.A. Weidner,”Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine”. J. Exp. Bot., vol. 58, pp. 545-554, 2007.
 [63] M.E. Fromm, F. Morrish, C. Armstrong, R. Williams, J. Thomas, and T.M. Klein, “Inheritance and expression of chimeric genes in the progeny of transgenic maize plants”. Biotechnology, vol. 8, pp. 833- 839, 1990.
 [64] B.K. Dennehey, W.L. Petersen, C. Ford-Santino, M. Pajeau, and C.L. Armstrong, “Comparison of selective agents for use with the selectable marker gene bar in maize transformation”. Plant Cell Tissue Organ Cult., vol.36, pp. 1-7, 1994.
 [65] A.R. Howe, C.S. Gasser, S,M, Brown, S.R. Padgette, J. Hart, G.B. Parker, M.E. Fromm, and C.L. Armstrong, “Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants”. Mol. Breed., vol.10, pp. 153-164, 2002.
[66] K. D’Halluin, E. Bonne, M., Bossut, M. DeBeuckeleer, and J. Leemans, “Transgenic maize plants by tissue electroporation”. Plant Cell, vol. 4, pp. 1495-1505, 1992.
[67] D.A. Walters, C.S. Vetsch, D.E. Potts, and R.C. Lundquist, “Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants”. Plant Mol. Biol., vol. 18, pp.189-200, 1992.
[68] X. Li, S.L. Volrath, D.B.G. Nicholl, C.E. Chilcott, M.A. Johnson, E.R. Ward, and M.D. Law,”Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize” .Plant Physiol., vol.133, pp. 736-747, 2003.
[69] D. Negrotto, M. Jolley, S. Beer, A.R. Wenck, and G. Hansen, “ use of phoshomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation”. Plant Cell Rep., vol. 19, pp. 798-803, 2000.
[70] H. Oltmanns, B. Frame, L.-Y. Lee, S. Johnson, B. Li, K. Wang, and S.B. Gelvin, “Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome”. Plant Physiol., vol. 152, pp. 1158-1166, 2010.
[71] V.K. Shukla, Y. Doyon, J.C. Miller, R.C. De Kelver, E.A. ,Moehle, S.E. Worden, et al., “Precise genome modification in the crop species Zea mays using zinc-finger nucleases”. Nature, vol. 459, pp. 437–441, 2009.
[72] H. Gao, J. Smith, M. Yang, S. Jones, V. Djukanovic, M.G. Nicholson, et al., “Heritable targeted mutagenesis in maize using a designed endonuclease”. Plant J., vol. 61, pp. 176–187, 2010.
[73] Z. Liang, K. Zhang, K. Chen, and C. Gao, “Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system”. J. Genet. Genomics, vol. 41, pp. 63–68, 2014.
 [74] Y. Wan, and P.G. Lemaux, “Generation of large numbers of independently transformed fertile barley plants”. Plant Physiol., vol. 104, pp. 37-48, 1994. [75] L.S. Kott, and K.J. Kasha,“Initiation and morphological development of somatic embryoids from barley cell cultures”. Can .J. Bot., vol. 62, pp. 1245-1249, 1984.
 [76] A. Jähne, P.A. Lazzeri, and H. Lörz, “Regeneration of fertile plants from protoplasts derived from embryogenic cell suspensions of barley (Hordeum vulgare L.)”. Plant Cell Rep., vol.10, pp. 1-6, 1991.
[77] M.-J. Cho, W. Jiang, and P.G. Lemaux, “Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism”. Plant Sci., vol. 138, pp. 229-244, 1998.
 [78] S. Tingay, D. Mcelroy, R. Kalla, S. Fieg, M. Wang, S. Thornton, and R. Brettell, “Agrobacterium tumefaciens-mediated barley transformation”. Plant J., vol.11, pp. 1369-137, 1997.
[79] F. Murray, R. Brettell, P. Matthews, D. Bishop, and J. Jacobsen, “Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes.” Plant Cell Rep., vol. 22, pp. 397-402, 2004.
[80] J.G. Bartlett, S.C. Alves, M. Smedley, J.W. Snape, and W.A. Harwood, “High-throughput Agrobacterium-mediated barley transformation”. Plant Methods, vol.4, pp. 22. 2008.
 [81] S. Zhang, M-J. Cho, T. Koprek, R. Yun, P. Bregitzer, and P.G. Lemaux, “Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings”. Plant Cell Rep., vol. 18, pp.959-966, 1999. [82] Q.A. Yao, E. Simion, M. William, J. Krochko, and K.J. Kasha, (1997). “Biolistic transformation of haploid isolated microspores of barley (Hordeum vulgare L.)”.Genome, vol. 40, pp. 570-581, 1997.
 [83] J. Kumlehn, L. Serazetdinova, G. Hensel, D. Becker, and H. Lörz, “Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens”. Plant Biotechnol. J., vol. 4, pp. 251-261, 2006.
[84] I.B. Holme, H. Brinch-Pedersen, M. Lange, and P.B. Holm, “Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules”. Plant Cell Rep., vol. 27, pp. 1833-1840, 2008.
[85] V.K. Sharma, R. Hänsch, R.R. Mendel, and J. Schulze, “Mature embryo axis-based high frequency somatic embryogenesis and plant regeneration from multiple cultivars of barley (Hordeum vulgare L.)”. J. Exp. Bot., vol.56, pp. 1913-1922, 2005.
 [86] U. Kuhlmann, and B. Foroughi-Wehr, “Production of doubled haploid lines in frequencies sufficient for barley breeding programs”. Plant Cell Rep., vol.8, pp.78–81, 1989.
 [87] A. Jähne, D. Becker, R. Brettschneider, and H. Lörz, “Regeneration of transgenic, microspore-derived, fertile barley”. Theor. Appl .Genet., vol. 89, pp.525-533,1994.
 [88] I.B. Holme, H. Brinch-Pedersen, M. Lange, and P.B. Holm, “Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules”. Plant Cell Rep., vol. 25, pp.1325-1335, 2006.
 [89] G. Hensel, V. Valkov, J. Middlefell-Williams, and J. Kumlehn, “Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions”. J. Plant Physiol., vol. 165, pp. 71–82, 2008.
[90] W.A. Harwood, “A protocol for high-throughput Agrobacteriummediated barley transformation”. Methods Mol. Biol, vol. 1099, pp.251–260, 2014.
[91] Y. Hiei, Y. Ishida, and T. Komari, “Progress of cereal transformation technology mediated by Agrobacterium tumefaciens”. Frontiers in Plant Science doi: 10.3389/fpls.2014.00628, 2014.
[92] D.A. Somers, H.W. Rines, W. Gu, H.F. Kaeppler, and W.R. Bushnell, “Fertile, transgenic oat plants” .Bio/Technology, vol. 10, pp.1589-1594, 1992.
 [93] K.A. Torbert, H.W. Rines, and D.A. Somers, “Use of paromomycin as a selective agent for oat transformation. Plant Cell Rep., vol. 14, pp. 635-640, 1995.
[94] B. Kuai, S. Perret, S.M. Wan, S.J. Dalton, A.J.E. Bettany, and P. Morris, “Transformation of oat and inheritance of bar gene expression”. Plant Cell Tissue Organ Cult., vol.66, pp.79-88, 2001.
[95] H.F. Kaeppler, G.K. Menon, R.W. Skadsen, A.M. Nuutila, and A.R. Carlson, “Transgenic oat plants via visual selection of cells expressing green fluorescent protein”. Plant Cell Rep., vol. 19, pp. 661-666, 2000.
[96] K.A. Torbert, H.W. Rines, and D.A. Somers, “Transformation of oat using mature embryo-derived tissue cultures”. Crop Sci., vol. 38, pp. 226-231, 1998.
[97] C. Gless, H. Lörz, and A. Jähne-Gärtner, “Establishment of a highly efficient regeneration system from leaf base segments of oat (Avena sativa L.)”. Plant Cell Rep., vol.17, pp.441-445, 1998.
 [98] S. Zhang, H. Zhong, and M.B. Sticklen, “Production of multiple shoots from shoot apical meristems of oat (Avena sativa L)”. J. Plant Physiol., vol. 148, pp. 667-671, 1996.
 [99] S. Zhang, R. Williams-Carrier, D. Jackson, and P.G. Lemaux, “Expression of CDC2Zm and KNOTTED1 during in vitro axillary shoot meristem proliferation and adventitious shoot meristem formation in maize (Zea mays L.) and barley (Hordeum vulgare L.)”. Planta, vol. 204, pp. 542-549, 1998. [100] S.B. Maqbool, H. Zhong, H. F. Oraby, and M.B. Sticklen, “Transformation of oats and its application to improving osmotic stress tolerance”. In Transgenic Wheat, Barley and Oats: Production and Characterization Protocols (Eds HD Jones, PR Shewry). Methods in Molecular Biology, Humana Press, Totowa, NJ, vol. 478, pp. 149-168, 2009.
[101] S.B. Maqbool, H. Zhong, Y. El-Maghraby, A. Ahmad, B. Chai, W. Wang, R. Sabzikar, and M.B. Sticklen, “Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1”. Theor. Appl. Genet., vol.105, pp.201-208, 2002.
[102] S. Gasparis, C. Bregier, W. Orczyk, and A. NadolskaOrczyk,“Agrobacterium-mediated transformation of oat (Avena sativa L.) cultivars via immature embryo and leaf explants”. Plant Cell Rep., vol.27, pp.1721-1729, 2008.